Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.

Gaussian process (GP) models are a flexible means of performing nonparametric Bayesian regression. However, GP models in healthcare are often only used to model a single univariate output time series, denoted as single-task GPs (STGP). Due to an increasing prevalence of sensors in healthcare settings, there is an urgent need for robust multivariate time-series tools. Here, we propose a method using multitask GPs (MTGPs) which can model multiple correlated multivariate physiological time series simultaneously. The flexible MTGP framework can learn the correlation between multiple signals even though they might be sampled at different frequencies and have training sets available for different intervals. Furthermore, prior knowledge of any relationship between the time series such as delays and temporal behavior can be easily integrated. A novel normalization is proposed to allow interpretation of the various hyperparameters used in the MTGP. We investigate MTGPs for physiological monitoring with synthetic data sets and two real-world problems from the field of patient monitoring and radiotherapy. The results are compared with standard Gaussian processes and other existing methods in the respective biomedical application areas. In both cases, we show that our framework learned the correlation between physiological time series efficiently, outperforming the existing state of the art.

Original publication

DOI

10.1109/TBME.2014.2351376

Type

Journal article

Journal

IEEE Trans Biomed Eng

Publication Date

01/2015

Volume

62

Pages

314 - 322

Keywords

Algorithms, Computer Simulation, Data Interpretation, Statistical, Humans, Models, Biological, Models, Statistical, Multivariate Analysis, Normal Distribution