Cookies on this website
We use cookies to ensure that we give you the best experience on our website. If you click 'Continue' we'll assume that you are happy to receive all cookies and you won't see this message again. Click 'Find out more' for information on how to change your cookie settings.
  • Bone density, microarchitecture, and material strength in chronic kidney disease patients at the time of kidney transplantation.

    27 June 2018

    Bone health is assessed by bone mineral density (BMD). Other techniques such as trabecular bone score and microindentation could improve the risk of fracture's estimation. Our chronic kidney disease (CKD) patients presented worse bone health (density, microarchitecture, mechanical properties) than controls. More than BMD should be done to evaluate patients at risk of fracture. INTRODUCTION: BMD measured by dual-energy X-ray absorptiometry (DXA) is used to assess bone health in end-stage renal disease (ESRD) patients. Recently, trabecular bone score (TBS) and microindentation that can measure microarchitectural and mechanical properties of bone have demonstrated better correlation with fractures than DXA in different populations. We aimed to characterize bone health (BMD, TBS, and strength) and calcium/phosphate metabolism in a cohort of 53 ESRD patients undergoing kidney transplantation (KT) and 94 controls with normal renal function. METHODS: Laboratory workout, lumbar spine/hip BMD measurements (using DXA), lumbar spine TBS, and bone strength were carried out. The latter was assessed with an impact microindentation device, standardized as percentage of a reference value, and expressed as bone material strength index (BMSi) units. Multivariable linear regression was used to study differences between cases and controls adjusted by age, gender, and body mass index. RESULTS: Among cases, serum calcium was 9.6 ± 0.7 mg/dl, phosphorus 4.4 ± 1.2 mg/dl, and intact parathyroid hormone 214 pg/ml [102-390]. Fourteen patients (26.4%) had prevalent asymptomatic fractures in spinal X-ray. BMD was significantly lower among ESRD patients compared to controls: lumbar 0.966 ± 0.15 vs 0.982 ± 0.15 (adjusted p = 0.037), total hip 0.852 ± 0.15 vs 0.902 ± 0.13 (adjusted p < 0.001), and femoral neck 0.733 ± 0.15 vs 0.775 ± 0.12 (adjusted p < 0.001), as were TBS (1.20 [1.11-1.30] vs 1.31 [1.19-1.43] (adjusted p < 0.001)) and BMSi (79 [71.8-84.2] vs 82. [77.5-88.9] (adjusted p = 0.005)). CONCLUSIONS: ESRD patients undergoing transplant surgery have damaged bone health parameters (density, microarchitecture, and mechanical properties) despite acceptably controlled hyperparathyroidism. Detecting these abnormalities may assist in identifying patients at high risk of post-transplantation fractures.

  • Study protocol: A multi-centre, double blind, randomised, placebo-controlled, parallel group, phase II trial (RIDD) to determine the efficacy of intra-nodular injection of anti-TNF to control disease progression in early Dupuytren's disease, with an embedded dose response study.

    3 July 2018

    Dupuytren's disease is a common fibrotic condition of the hand affecting 4% of the population and causes the fingers to curl irreversibly into the palm. It has a strong familial tendency, there is no approved treatment for early stage disease, and patients with established digital contractures are most commonly treated by surgery. This is associated with prolonged recovery, and less invasive techniques have high recurrence rates.The myofibroblasts, the cells responsible for the excessive matrix deposition and contraction, are aggregated in nodules. Using excised diseased and control human tissue, we found that immune cells interspersed amongst the myofibroblasts secrete cytokines. Of these, only tumour necrosis factor (TNF) promoted the development of myofibroblasts. The clinically approved anti-TNF agents led to inhibition of the myofibroblast phenotype in vitro. This clinical trial is designed to assess the efficacy of the anti-TNF agent adalimumab on participants with early disease. The first part is a dose-ranging study where nodules of participants already scheduled for surgery will be injected with either placebo (saline) or varying doses of adalimumab. The excised tissue will then be analysed for markers of myofibroblast activity.The second part of the study will recruit participants with early stage disease. They will be randomised 1: 1 to receive either adalimumab or placebo at 3 month intervals over 1 year and will then be followed for a further 6 months. Outcome measures will include nodule hardness, size and disease progression. The trial will also determine the cost-effectiveness of adalimumb treatment for this group of participants.

  • Interventions for preventing silent cerebral infarcts in people with sickle cell disease.

    29 June 2018

    BACKGROUND: Sickle cell disease (SCD) is one of the commonest severe monogenic disorders in the world, due to the inheritance of two abnormal haemoglobin (beta globin) genes. SCD can cause severe pain, significant end-organ damage, pulmonary complications, and premature death. Silent cerebral infarcts are the commonest neurological complication in children and probably adults with SCD. Silent cerebral infarcts also affect academic performance, increase cognitive deficits and may lower intelligence quotient. OBJECTIVES: To assess the effectiveness of interventions to reduce or prevent silent cerebral infarcts in people with SCD. SEARCH METHODS: We searched for relevant trials in the Cochrane Library, MEDLINE (from 1946), Embase (from 1974), the Transfusion Evidence Library (from 1980), and ongoing trial databases; all searches current to 19 September 2016. We searched the Cochrane Cystic Fibrosis and Genetic Disorders Group Trials Register: 06 October 2016. SELECTION CRITERIA: Randomised controlled trials comparing interventions to prevent silent cerebral infarcts in people with SCD. There were no restrictions by outcomes examined, language or publication status. DATA COLLECTION AND ANALYSIS: We used standard Cochrane methodological procedures. MAIN RESULTS: We included five trials (660 children or adolescents) published between 1998 and 2016. Four of the five trials were terminated early. The vast majority of participants had the haemoglobin (Hb)SS form of SCD. One trial focused on preventing silent cerebral infarcts or stroke; three trials were for primary stroke prevention and one trial dealt with secondary stroke prevention.Three trials compared the use of regular long-term red blood cell transfusions to standard care. Two of these trials included children with no previous long-term transfusions: one in children with normal transcranial doppler (TCD) velocities; and one in children with abnormal TCD velocities. The third trial included children and adolescents on long-term transfusion.Two trials compared the drug hydroxyurea and phlebotomy to long-term transfusions and iron chelation therapy: one in primary prevention (children), and one in secondary prevention (children and adolescents).The quality of the evidence was moderate to very low across different outcomes according to GRADE methodology. This was due to trials being at high risk of bias because they were unblinded; indirectness (available evidence was only for children with HbSS); and imprecise outcome estimates. Long-term red blood cell transfusions versus standard care Children with no previous long-term transfusions and higher risk of stroke (abnormal TCD velocities or previous history of silent cerebral infarcts) Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, risk ratio (RR) 0.11 (95% confidence interval (CI) 0.02 to 0.86) (one trial, 124 participants, low-quality evidence); but make little or no difference to the incidence of silent cerebral infarcts in children with previous silent cerebral infarcts on magnetic resonance imaging and normal or conditional TCDs, RR 0.70 (95% CI 0.23 to 2.13) (one trial, 196 participants, low-quality evidence).No deaths were reported in either trial.Long-term red blood cell transfusions may reduce the incidence of: acute chest syndrome, RR 0.24 (95% CI 0.12 to 0.49) (two trials, 326 participants, low-quality evidence); and painful crisis, RR 0.63 (95% CI 0.42 to 0.95) (two trials, 326 participants, low-quality evidence); and probably reduces the incidence of clinical stroke, RR 0.12 (95% CI 0.03 to 0.49) (two trials, 326 participants, moderate-quality evidence).Long-term red blood cell transfusions may improve quality of life in children with previous silent cerebral infarcts (difference estimate -0.54; 95% confidence interval -0.92 to -0.17; one trial; 166 participants), but may have no effect on cognitive function (least squares means: 1.7, 95% CI -1.1 to 4.4) (one trial, 166 participants, low-quality evidence). Transfusions continued versus transfusions halted: children and adolescents with normalised TCD velocities (79 participants; one trial)Continuing red blood cell transfusions may reduce the incidence of silent cerebral infarcts, RR 0.29 (95% CI 0.09 to 0.97 (low-quality evidence).We are very uncertain whether continuing red blood cell transfusions has any effect on all-cause mortality, Peto odds ratio (OR) 8.00 (95% CI 0.16 to 404.12); or clinical stroke, RR 0.22 (95% CI 0.01 to 4.35) (very low-quality evidence).The trial did not report: comparative numbers for SCD-related adverse events; quality of life; or cognitive function. Hydroxyurea and phlebotomy versus transfusions and chelation Primary prevention, children (121 participants; one trial)We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts (no infarcts); all-cause mortality (no deaths); risk of stroke (no strokes); or SCD-related complications, RR 1.52 (95% CI 0.58 to 4.02) (very low-quality evidence). Secondary prevention, children and adolescents with a history of stroke (133 participants; one trial)We are very uncertain whether switching to hydroxyurea and phlebotomy has any effect on: silent cerebral infarcts, Peto OR 7.28 (95% CI 0.14 to 366.91); all-cause mortality, Peto OR 1.02 (95%CI 0.06 to 16.41); or clinical stroke, RR 14.78 (95% CI 0.86 to 253.66) (very low-quality evidence).Switching to hydroxyurea and phlebotomy may increase the risk of SCD-related complications, RR 3.10 (95% CI 1.42 to 6.75) (low-quality evidence).Neither trial reported on quality of life or cognitive function. AUTHORS' CONCLUSIONS: We identified no trials for preventing silent cerebral infarcts in adults, or in children who do not have HbSS SCD.Long-term red blood cell transfusions may reduce the incidence of silent cerebral infarcts in children with abnormal TCD velocities, but may have little or no effect on children with normal TCD velocities. In children who are at higher risk of stroke and have not had previous long-term transfusions, long-term red blood cell transfusions probably reduce the risk of stroke, and other SCD-related complications (acute chest syndrome and painful crises).In children and adolescents at high risk of stroke whose TCD velocities have normalised, continuing red blood cell transfusions may reduce the risk of silent cerebral infarcts. No treatment duration threshold has been established for stopping transfusions.Switching to hydroxyurea with phlebotomy may increase the risk of silent cerebral infarcts and SCD-related serious adverse events in secondary stroke prevention.All other evidence in this review is of very low-quality.